Abstract
Ablowitz and Ladik discovered a discretization that preserves the integrability of the nonlinear Schrödinger equation in one dimension. We compute the generalized free energy of this model and determine the generalized Gibbs ensemble averaged fields and their currents. They are linked to the mean-field circular unitary matrix ensemble. The resulting hydrodynamic equations follow the pattern already known from other integrable many-body systems. The discretized modified Korteweg–de-Vries equation is also studied, which turns out to be related to the beta Jacobi log gas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.