Abstract
The high-specific-speed centrifugal pumps are very common in industrial factory for transporting fluids all day long. However, oversized pumps with low performance still could meet the purpose of fluid transporting. The aim of this study was to reduce the existed commercial impeller energy consumption by optimizing the performance of impeller through CAE processes. The impeller model was first generated by BladeGen software and analyzed by CFX in Turbo-mode. The optimized model then exported to machine center to cut the precise aluminum mold. A regular sand die casting processes were used to manufacture the impeller. The original pump which only impeller was replaced with the new one was tested with performance measurement system again. The results show that when the mass flow rate between 40-90kg/s the CFD software predicted very well pump heads and efficiencies with experimental data, which was called optimized impeller. But around the minimum and maximum flow rate region, the recirculation flow between blades and frictional loss model used still need further investigation to shrink the difference. Compare to the original impeller, the optimized one had increased efficiency 6% at the mass flow rate of 80kg/s. Also the high efficiency region (nearby of BEP) of the new impeller had broadened 50%. And the maximum mass flow rate increased 13% than the original one.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.