Abstract

Abstract Excess phosphorus in lakes may cause algal blooming, and total phosphorus (TP) is an important index for lake eutrophication. As an important source of TP, lake sediment contributes a lot to TP release. TP release across the sediment–water interface varies with the hydrodynamic conditions of the overlying water, and in this paper the release characteristics of TP under hydrodynamic disturbance has been investigated. The sediment samples from Xuanwu Lake are collected and their release characteristics of TP under varying shear velocity are simulated in laboratory apparatus. Results show that increasing shear velocity contributes to the release of TP from sediment and the combination of varying shear velocity in different stages has a significant influence on the distribution of TP concentration. Further, the lattice Boltzmann method (LBM) is used to simulate the process of TP release from the sediment–water interface and the predicted values agree well with the measured data, which proves that the LBM can be used in simulating the process of TP release from sediment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call