Abstract
An analytical model is developed to evaluate mixing induced by natural convection in a fluid‐saturated porous medium. First, the velocity and concentration fields are decoupled to generate a steady state velocity field and initiate a naturally convective system. In order to decouple the velocity and concentration fields, a steady thermal natural convection is established by imposing a destabilizing vertical temperature gradient across a porous layer and then introducing a passive tracer into the system. Based on the steady velocity field, effective longitudinal and transverse dispersion coefficients are evaluated using the shear flow dispersion theory, and convective mixing of the passive tracer is obtained using the developed analytical mixing model. The estimated dispersion coefficients and convective mixing are then characterized by the system Rayleigh and Sherwood numbers. The mixing obtained by the analytical model is then compared with high‐resolution numerical simulations. The results reveal that the simple analytical solution represents the nonlinear mixing involved in such a system and agrees with the numerical results. The developed model has potential applications in geophysical and geothermal buoyancy‐driven flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.