Abstract

We studied the frequency response of a magnetically driven atomic force microscope (AFM) cantilever close to a sample surface in liquids. Amplitude–frequency (tuning) curves showed pronounced differences in dependence on the tip–sample separation (from 1 to 50 μm), with significant shifts of the resonance peak. A model was developed in which the cantilever was described in a full shape manner and the hydrodynamic forces acting on the cantilever were approximately calculated. The slight inclination of the cantilever to the surface ( α∼15°) leads to a force profile along the cantilever. Therefore, the mathematical problem can be strictly solved only numerically. For an approximate analytical solution, the hydrodynamic force profile was approximated by a constant force along the cantilever for large separations and by a point force acting on the tip of the cantilever for small separations. The theoretical results calculated within this model agreed well with the experimental data and allowed to determine the cantilever mass in liquid M *, the joint mass at the tip end m t *, and the coefficient of viscous interaction of the cantilever with free liquid, γ ∞.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.