Abstract

This paper describes delicate, but large-scale, experiments aimed at measuring the hydrodynamic damping of a circular cylinder oscillating in still water and transversely in a current. Attention is concentrated on the regime of very small Keulegan–Carpenter numbers, in which the drag coefficient is inversely proportional to the Keulegan–Carpenter number. Measurements in still water at β=650 000 and 1250 000 point to drag coefficients about twice those appropriate to two-dimensional laminar flow, in common with earlier measurements at β≈105. In the presence of a slowly varying transverse current (generated by placing the cylinder at the node of standing waves of long period), the damping increased with the reduced velocity of the ambient flow at a rate that increased with the Reynolds number.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.