Abstract

Griffin, Wu and Stringari have derived the hydrodynamic equations of a trapped dilute Bose gas above the Bose-Einstein transition temperature. We give the extension which includes hydrodynamic damping, following the classic work of Uehling and Uhlenbeck based on the Chapman-Enskog procedure. Our final result is a closed equation for the velocity fluctuations δvwhich includes the hydrodynamic damping due to the shear viscosity θ and the thermal conductivity κ. Following Kavoulakis, Pethick and Smith, we introduce a spatial cutoff in our linearized equations when the density is so low that the hydrodynamic description breaks down. Explicit expressions are given for θ and κ, which are position-dependent through dependence on the local fugacity when one includes the effect of quantum degeneracy of the trapped gas. We also discuss a trapped Bose-condensed gas, generalizing the work of Zaremba, Griffin and Nikuni to include hydrodynamic damping due to the (non-condensate) normal fluid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.