Abstract
A complex-shaped underwater robot with a device which can weld for a nuclear reactor pool in emergency and inspect in daily was developed. Hydrodynamic coefficients in the dynamic model were critical to control precisely. In this work, a numerical simulation of robot had been employed for hydrodynamic coefficients calculation based on the computational fluid dynamics (CFD). Hydrodynamic coefficients including inertial hydrodynamic coefficients, viscous hydrodynamic coefficients were respectively solved by simulating virtually a steady-state motion simulation test and an unsteady-state motion simulation test in CFD. A prototype test in a circulating water channel had been launched to validate simulation results. Furthermore, viscous hydrodynamic and inertia hydrodynamic coefficients were acquired. The accuracy and reliability of hydrodynamic coefficients was proved by comparing to the prototype test results. All work carried out was indicated to be benefit to hydrodynamic coefficient study and complex-shaped underwater robot control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.