Abstract
Symbiotic relationships have developed through natural evolution which can provide advantages to parties in terms of survival. For example, that of the remora fish attached to the body of a shark to compensate for their poor swimming ability. From the remora's perspective, this could be associated to an increased hydrodynamic efficiency in swimming and this needs to be investigated. To understand the remora's swimming strategy in the attachment state, a systematic study has been conducted using the commercial Computational Fluid Dynamics CFD software, STAR-CCM+ to analyse and compare the resistance characteristics of the remora in attached swimming conditions. Two fundamental questions are addressed: what is the effect of the developed boundary layer flow and the effect of the adverse pressure gradient on the remora's hydrodynamic characteristics? By researching the hydrodynamic characteristics of the remora on varying attachment locations, the remora's unique behaviours could be applied to autonomous underwater vehicles (AUVs), which currently cannot perform docking and recovery without asking the mother vehicle to come for a halt.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The 9th Conference on Computational Methods in Marine Engineering (Marine 2021)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.