Abstract
The hydrodynamic properties in the riser and standpipe. and the cyclone efficiency have been determined in a circulating fluidized bed (CFB) unit consisting of a riser (0.05 m-IDX3.8 m high), a standpipe (0.068 m-IDX2.5 m high) as a primary cyclone/bubbling fluidized bed, and a secondary cyclone. Silica gel powder (mean diameter = 46 μm) was used as the bed material. The effects of gas velocity in the riser and initial solid loading on the solid circulation rate, and the solid holdups in the riser and standpipe have been determined. The effects of gas velocity in the standpipe on the efficiencies of primary and secondary cyclones have been also determined as functions of solid circulation rate and solid entrainment rate. The solid circulation rate increases with increases in the gas velocity in the riser and in the initial solid loading. The efficiencies of primary and secondary cyclones increase with an increase in the gas velocity in the riser. However, the efficiency of primary cyclone decreases and that of secondary cyclone increases slightly, with an increase in the gas velocity in the standpipe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.