Abstract

Cyclone separators used for separating solid particles from the gases mainly employed in electricity generating units having fluidized bed boilers and in other industries such as cement industries. In the present study, cylindrical portion of the nonfinned (conventional) cyclone separator (nfcs) was reshaped by fixing triangular helical fins in order to improve its performance in terms of collection efficiency. Fluid dynamic characteristics like axial velocity, tangential velocity, pressure drops etc. were studied which influences the collection efficiency by varying the fin size (fs) such as 5.0 mm, 7.5 mm and 10.0 mm and also by varying fin pitch (fp) as 50.0 mm and 30.0 mm. With available experimental work, validation was accomplished for the nfsc before proceeding computational study on the novel triangular finned cyclone separators (fcs). For the particles' size less than 3 μm, comparatively proposed triangular fin with fs & fp as 7.5 mm & 30.0 mm respectively was giving improved collection efficiency than other selected separators. Improvement in the collection efficiency of triangular finned cyclone separators (fcs) was perceived from 5% to 10% over the conventional cyclone separator (nfcs). Main role of the cyclone separators is to separate the particles from gases which was unruffled after by inclusion of fins. Rather fin inclusion has played a dominant role in minimizing very fine particulate matter emissions which otherwise leads to severe health problems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.