Abstract
The possibility to conduct complete cell assays under a precisely controlled environment while consuming minor amounts of chemicals and precious drugs have made microfluidics an interesting candidate for quantitative single-cell studies. Here, we present an application-specific microfluidic device, cellcomb, capable of conducting high-throughput single-cell experiments. The system employs pure hydrodynamic forces for easy cell trapping and is readily fabricated in polydimethylsiloxane (PDMS) using soft lithography techniques. The cell-trapping array consists of V-shaped pockets designed to accommodate up to six Saccharomyces cerevisiae (yeast cells) with the average diameter of 4 μm. We used this platform to monitor the impact of flow rate modulation on the arsenite (As(III)) uptake in yeast. Redistribution of a green fluorescent protein (GFP)-tagged version of the heat shock protein Hsp104 was followed over time as read out. Results showed a clear reverse correlation between the arsenite uptake and three different adjusted low = 25 nL min−1, moderate = 50 nL min−1, and high = 100 nL min−1 flow rates. We consider the presented device as the first building block of a future integrated application-specific cell-trapping array that can be used to conduct complete single cell experiments on different cell types.
Highlights
Single cell analysis techniques emerging in the past decade have proposed numerous novel and fascinating prospects in the area of life sciences
We developed an experimental platform combining a microfluidic chamber with optical tweezers and advanced time-lapse microscopy [17,30,31], which has vastly been used to identify the underlying mechanisms of different signaling pathways in Saccharomyces cerevisiae cells
We demonstrated the functionality of this device for trapping yeast cells and showed that the device could successfully be used for single-cell applications
Summary
Single cell analysis techniques emerging in the past decade have proposed numerous novel and fascinating prospects in the area of life sciences This involves biologists and scientists from the fields of engineering, physics, and chemistry to join forces in resolving some of the sophisticated and fundamental problems of stochastic cellular behavior. Lab-on-Chip devices [1,2,3] for example have been one of the main tools employed to realize such possibilities No doubts, these systems have brought about the potential of studying individual cells in such detail that for instance our knowledge have penetrated into the covert voids of—as it seems—totally stochastic fluctuations of gene expression [4,5]. Investigating such heterogeneities in clonal cell populations has provided invaluable information about intracellular signaling events and cell-to-cell communication phenomena, which was not possible to obtain through the traditional, well established biological techniques, such as Western blotting [6] and real time PCR [7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.