Abstract

A new alternative for hydrodynamic cavitation-assisted pretreatment of sugarcane bagasse was proposed, along with a simultaneous saccharification and co-fermentation (SSCF) process performed in interconnected columns. Influential variables in the pretreatment were evaluated using a statistical design, indicating that an ozone flow rate of 10 mg min−1 and a pH of 5.10 resulted in 86 % and 72 % glucan and xylan hydrolysis yields, respectively, in the subsequent enzymatic hydrolysis process. Under these optimized conditions, iron sulfate (15 mg L−1) was added to assess Fenton pretreatment, resulting in glucan and xylan hydrolysis yields of 92 % and 71 %, respectively, in a material pretreated for 10 min. In SSCF, ethanol volumetric productivities of 0.33 g L−1 h−1 and of 0.54 g L−1 h−1 were obtained in batch and fed-batch operation modes, achieving 26 g L−1 of ethanol in 48 h in the latter mode.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call