Abstract

We discuss the hydrodynamic boundary condition for a superfluid moving tangentially to a rough surface. Specifically, we argue that the scattering of quantum fluctuations off surface roughness affects the nature of the boundary condition, and that this has important consequences including a theorized critical speed and the presence of normal fluid at any nonzero speed, even if the boundary is held at zero temperature (i.e., a moving superfluid flow creates a sustained temperature difference between the superfluid and the boundary). This hydrodynamic boundary condition is relevant not only for superfluid helium experiments but also for experiments with trapped dilute Bose-Einstein condensates, in particular, those involving atomic waveguides near surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.