Abstract

This article presents a computational study to investigate the hydrodynamic and thermal characteristics of the flow inside a rectangular microchannel with the dimensions of 5000 × 1500 × 100 μm3 (l × w × h’) with different inline arrangements of cylindrical micro pin fins. A parametric study is performed on the effect of different geometrical specifications of micro pin fins on the wake-pin fin interaction. Three values of (50, 100 and 200 μm) are considered for the pin fin diameters (D) while the overall height (H) of the system is set to be constant (100 μm). For the first two cases, two longitudinal and vertical pitch ratios (SL/D and ST/D) of 1.5 and 3 are considered while for H/D ratio of 0.5, only ST/D ratio of 1.5 and SL/D ratios of 1.5 and 3 are considered. As a result, a total number of ten different geometries are analyzed in five different Reynolds numbers of 20, 40, 80, 120 and 160. A constant heat flux is applied through the bottom surface of the microchannel as well as the micro pin fins surfaces. All other surfaces are assumed to be thermally isolated. Thermodynamic properties of water are set to vary with temperature and it is assumed that the working flow remains in the liquid form in all operating conditions. ANSYS commercial package v14.5 with an academic license is utilized to generate the 3D models, applying the appropriate grid networks and simulating the flow fields for each configuration. Results show major dependencies of pressure drops, friction factors, Nusselt numbers and Thermal Performance Index values on ST/D ratio and Reynolds number while minor dependencies of these parameters on SL/D and H/D ratios are observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.