Abstract

In two-phase slug flow pattern, the bulk of the gas is trapped inside large bubbles that are separated by liquid slugs, which may contain small dispersed bubbles. The unsteady nature of slug flow makes the prediction of pressure drop and heat and mass transfer a difficult task. Earlier models that deal with steady slug flow assume constant lengths and shapes of liquid slugs and elongated bubbles, as well as a constant elongated bubble propagation velocity. However, due to the intrinsically irregular character of slug flow, statistical means are required for its proper description. Variation of the flow parameters along the pipes of various diameters and inclinations may strongly affect the resulting flow pattern and should thus be taken into account in modeling the flow. The development of slug flow along the pipe is mainly governed by the interaction between consecutive elongated bubbles

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.