Abstract

The adipose fin on fishes is a highly conserved and enigmatic, small, non-rayed fin that has persisted from the Mesozoic on some basal teleosts such as salmonids. Using juvenile steelhead, Oncorhynchus mykiss (Walbaum, 1792), ranging from 5 to 18 cm standard length, we experimentally test the effects of adipose fin removal on swimming performance in a variable velocity flow chamber and quantify, with seven independent trials, amplitude and frequency of caudal fin movement at multiple flow velocities (range 10–39 cm·s–1). Results demonstrate that adipose fin removal on smolts produces an average 8% (range –3% to 23%) increase in caudal fin amplitude relative to unclipped fish across all velocities. However, we observed no effects in trials with smaller fish (<7 cm) or larger fish (>12 cm). Consistent with speculations in the literature, our results show that the adipose fin may function to control vortices enveloping the caudal fin during swimming or, alternatively, function as a passive precaudal sensor of turbulent flow. Phylogenetic persistence of this trait among multiple groups of early bony fishes is probably due to its hydrodynamic attributes rather than developmental constraints, and the current widespread practice in fisheries of removing the adipose fin as a marking technique may have significant biological costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.