Abstract

Steady, two-dimensional, symmetric, laminar and incompressible flow past parabolic bodies in a uniform stream with constant heat flux is investigated numerically. The full Navier–Stokes and energy equations in parabolic coordinates with stream function, vorticity and temperature as dependent variables were solved. These equations were solved using a second order accurate finite difference scheme on a non-uniform grid. The leading edge region was part of the solution domain. Wide range of Reynolds number (based on the nose radius of curvature) was covered for different values of Prandtl number. The flow past a semi-infinite flat plate was obtained when Reynolds number is set equal to zero. Results are presented for pressure and temperature distributions. Also local and average skin friction and Nusselt number distributions are presented. The effect of both Reynolds number and Prandtl number on the local and average Nusselt number is also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call