Abstract

In recent years, the development and construction of islands and reefs has been proposed by the government and commercial company. However, as a large cargo carrier cannot reach islands and reefs if the harbor is not available, such type of carrier which has well deck is designed to meet the requirements of delivering people and equipment. It is a possible way to connect the island and supply cargo ships. This paper firstly summarizes the domestic and foreign research progress of hydrodynamic analysis of ships with well deck. Then, based on the CFD (Computational Fluid Dynamics) tools, we set up a linear numerical wave tank and study the hydrodynamic performance of original Wigley-III ship and modified Wigley-III ship with well deck. The hydrodynamic effect of the floating body in the well deck has been investigated and discussed.

Highlights

  • With the development of computer technology, various numerical modeling tools are becoming possibility

  • FLUENT is based on the Finite Volume Method (FVM), in which governing equation has been discretized by the FVM

  • E Computational Fluid Dynamics (CFD) package, FLUENT, has been successfully utilized to solve the fluid and fluid-structure interactions, and it is used as a basic solver with User Defined Functions (UDF) in this work

Read more

Summary

Introduction

With the development of computer technology, various numerical modeling tools are becoming possibility. Yan et al bib used the twopoint method to separate the wave morphology of each component wave after the submerged body and established a two-dimensional fully nonlinear numerical model to simulate the wave effect on a submerged horizontal cylinder based on the in-domain wave-making technology. Fang et al [6] used the mixed finite difference and finite volume numerical schemes to solve the two-dimensional fully nonlinear distributed water wave equation and established the fully nonlinear Boussinesq wave propagation numerical model based on the MUSTA scheme. Zhang et al [7] established a two-dimensional viscous numerical water trough based on the CIP method, which can be used to simulate linear, weakly nonlinear, and strongly nonlinear waves. Li and Ning [8] simulated and studied the deformation of long wave train propagation and the energy exchange between waves of various orders

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.