Abstract

Abstract In this work, the influence of pressure and temperature experimentally applied on reactive distillation (RD) under lower conditions than conventional hydrotreating (HDT) processes, the hydrodesulfurization (HDS) reaction of 4,6–dimethyldibenzothiophene (4,6–DMDBT) molecule and the experimental performance of a down-flow micro trickle bed reactor (micro-TBR) with n–dodecane and decalin were studied. Thermodynamic analyses to evaluate hydrogen solubility in liquid hydrocarbons and evaporation for n–dodecane and decalin as lineal and cyclic representative solvents, respectively, were considered. It was possible to define experimental conditions, producing a small deviation of the plug flow model (PFM) and diminished the gas–liquid (G–L) mass transfer limitation as determined from a reactor model at 2.5 MPa. The axial dispersion model (ADM) and PFM models adjust the experimental data at 2.5 MPa operational pressure and the 4,6–DMDBT conversion obtained was ca. 20–50% using n–dodecane; 1.5 times higher when decalin was using. This behavior was due to the liquid hydrogen fraction of n–dodecane was two times higher than for decalin for all operational pressures. In this sense, the use of n–dodecane as a solvent decreased the mass transfer resistance at the G–L and liquid–solid (L–S) interphases. The internal mass transfer resistance in the G–L interphase not only depends on the diffusivity of the solvent, but it also depends on both, the temperature and hydrogen pressure, finding that the RD conditions with n–dodecane are viable in the treatment of sterically impaired molecules in HDS processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call