Abstract

Silica–alumina supported Pd catalysts with a second metal such as Cu, Ru or Pt have been prepared (nominal content: 1 wt%) and tested in the naphthalene hydrogenation (HYD) and dibenzothiophene hydrodesulfurization (HDS) model reactions. These catalysts were characterized by means of temperature-programmed reduction, NH 3 temperature-programmed desorption and photoelectron spectroscopy techniques. The combined use of all these techniques revealed that only in the case of PtPd system a rather uniform distribution of the metals across the pore network is achieved. Another important observation was that the PtPd system exhibited strong Brönsted acid sites. The highest HYD and HDS activities of the PtPd bimetallic catalyst can be related not only to a high dispersion of the metals and their uniform distribution but also to its strong Brönsted acidity. The PtPd system presented the highest DBT conversion (83.1%) and the highest C–S hydrogenolysis activity as illustrated by the lowest S-containing products (21.9 wt%) as compared with the much higher S-containing products (54.8 wt%) obtained with the monometallic Pd/ASA catalyst under the same experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.