Abstract

Catalytic hydrodeoxygenation of furylmethane oxygenates to high carbon branched chain jet and diesel fuel range alkanes under mild reaction conditions is a promising strategy for energy-efficient production of fuels with minimal C–C cracking to undesired products. Here, we report that a strong Lewis acidic promoter can overcome the energy barrier for furylmethane hydrodeoxygenation at lower temperature. Furan rings of furylmethanes are first hydrogenated to fully saturated cyclic ethers by a hydrogenation catalyst, which then undergo facile ring opening and deoxygenation by the promoter. A cyclic intermediate between ethereal O and the Lewis acidic metal center, assisted by the triflate ligand of the promoter, is formed in the ring-opening step. Probing the reaction pathway with symmetric single furan ring surrogate molecules suggests that the promoter is necessary for the ring opening. Deoxygenation of ring-opened oxygenates takes place more quickly for single furan ring surrogates than for the multiple ...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call