Abstract

In this paper, we sought to elucidate the relationships between biomass feedstock type and the suitability of their fast-pyrolysis bio-oils for hydrodeoxygenation (HDO) upgrading. Switchgrass, Eucalyptus benthamii, and equine manure feedstocks were pyrolyzed into bio-oil using a continuous fast-pyrolysis system. We also synthesized variations of switchgrass bio-oil using catalytic pyrolysis methods (HZSM-5 catalyst or tail-gas recycle method). Bio-oil samples underwent batch HDO reactions at 320°C under ~2100psi H2 atmosphere for 4h, using Pt, Ru, or Pd on carbon supports. Hydrogen consumption was measured and correlated with compositional trends. The resulting organic, aqueous, and gas phases were analyzed for their chemical compositions. Mass balances indicate little coke formation. Switchgrass bio-oil over Pt/C performed the best in terms of hydrogen consumption efficiency, deoxygenation efficiency, and types of upgraded bio-oil compounds. Eucalyptus feedstocks consistently consumed more than twice the normal amount of hydrogen gas per run, primarily due to the elevated syringol content. Catalytically pyrolyzed bio-oils deoxygenated poorly over Pt/C but hydrogenated more extensively than other oils. Although the relative deoxygenation (%DOrel) varied based on feedstock and catalyst, the absolute deoxygenation (%DOabs) depended only on the overall yield. The total extent of upgrading (hydrogenation+deoxygenation) remained independent of feedstock and catalyst.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.