Abstract
Hydrodeoxygenation (HDO) of triglycerides into hydrocarbons is a novel catalytic process for the production of green biofuels. In this work, the HDO reaction mechanism over Rh/ZrO2 catalyst was studied by selecting methyl palmitate as a model compound. HDO of methyl palmitate proceeded initially via the hydrogenolysis into palmitic acid intermediate, followed by sequential hydrogenation-decarbonylation reaction into pentadecane via aldehyde intermediate. Bifunctional mechanism of the Rh/ZrO2 catalyst is advocated for the HDO process, in which both Rh sites and oxygen vacancy sites on ZrO2 synergistically contribute to the catalysis. The interface between Rh nanoparticle and support was proposed to host the most active sites. Based on our earlier work, a surface reaction mechanism was proposed and slightly modified to develop a set of mechanistic kinetic models. The mechanistic model consisting of two distinct types of adsorption sites for oxygenated components and H2, gave a good fitting to the kinetic data over a broad range of reaction conditions and conversion levels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.