Abstract

The Fe-doped Ni2P/Fe-SBA-15 was prepared by the temperature programmed reduction method at a relative low temperature of 673 K. The effect of Fe on the catalytic performance for benzofuran (BF) hydrodeoxygenation (HDO) and dibenzothiophene (DBT) hydrodesulfurization (HDS) were investigated. The catalysts were characterized by means of X-ray diffraction (XRD), N2 adsorption-desorption, inductively coupled plasma mass spectrometry (ICP-MS), X-ray photoelectron spectroscopy (XPS), temperature-programmed desorption of ammonia (NH3-TPD), and transmission electron microscope (TEM) and CO uptakes. The results indicate the incorporation of Fe into SBA-15 contributes to the exposure of smaller Ni2P particles (5.6 nm) with an uniform dispersion, along with enhancement of weak and medium acid strengths. Compared with Ni2P/SBA-15, the Fe-doped Ni2P/Fe-SBA-15 exhibited a much higher BF conversion of 91.7% with an improved total deoxygenated product yield of 83.3%. The excellent HDO performance of Ni2P/Fe-SBA-15 can be ascribed to the exposure of highly-dispersed smaller Ni2P particles. Meanwhile, the improved dehydration of 2-EtPh to EB and the high deoxygenated product selectivity can be attributed to the enhanced acidity. As compared to the Ni2P/SBA-15, the Fe-doped Ni2P/Fe-SBA-15 showed a higher DBT HDS activity of 96.3% with the BP formation at a great proportion of 90.3%, indicating that DBT was mainly transformed through the desulfurization pathway during HDS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.