Abstract
Periodic density functional theory (DFT) calculations were performed to investigate the hydrodenitrogenation (HDN) mechanism of pyridine on MoP(010). The geometries and energies for the adsorbed pyridine were first described, and then the competition between hydrogenation and denitrification of pyridine were analysed to elaborate the HDN mechanism. Our results show that pyridine has side-on and end-on adsorption modes on MoP(010), in which the most stable η4(N1,C2,C3,C5) configuration of the side-on mode facilitates the hydrogenation of pyridine. The favourable HDN pathway of pyridine proceeds along the pyridine→4-Monohypyridine→3,4-Dihydropyridine→1,3,4-Trihydropyridine→1,3,4,5-Tetrahydropyridine→CH(CH2)3CHNH route. The denitrification process could not exhibit the competitive advantage until after the fourth hydrogenation step of 1,3,4,5-Tetrahydropyridine. This theoretical work provides further information on the HDN mechanism of pyridine on MoP(010), and also provides insight into the understanding of competition between hydrogenation and denitrification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.