Abstract

The reduction of monometallic Pd/Al2O3 and bimetallic PdFe/Al2O3 catalysts produced by co-impregnation or sequential impregnation of the support with metal salts was possible not only under high temperature hydrogen treatment but also at 30 °C under the action of aqueous phenol solution and hydrogen. According to the XPS data, both reduction routes provided sufficient degrees of Pd reduction required for fast hydrodehalogenation of 4-chlorophenol and 4-bromophenol to phenol in aqueous solutions. The degree of Pd reduction was higher in the co-impregnated bimetallic PdFe catalyst, which was more efficient in transformation of 4-bromophenol; the bimetallic catalysts were more stable than the monometallic Pd one in the conversion of 4-chlorophenol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call