Abstract

The surface chemistry of benzene and bromobenzene over Pt(111) has been studied by temperature-programmed XPS/MS and NEXAFS. Time-resolved XPS shows that benzene adopts a single chemically distinguishable environment during low-temperature adsorption within the monolayer, with a saturation coverage at θC6H6 = 0.2 ML. Around 20% of a benzene monolayer desorbs molecularly, while the remainder dehydrogenates to surface carbon. Bromobenzene likewise adsorbs molecularly at 90 K, giving rise to two C 1s environments at 284.4 and 285.3 eV corresponding to the C−H and C−Br functions, respectively. The saturation C6H5Br monolayer coverage is 0.11 ML. NEXAFS reveals that bromobenzene adopts a tilted geometry, with the ring plane at 60 ± 5° to the surface. Bromobenzene multilayers desorb at ∼180 K, with higher temperatures promoting competitive molecular desorption versus C−Br scission within the monolayer. Approximately 30% of a saturated bromobenzene monolayer either desorbs reversibly or as reactively formed hydr...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.