Abstract

Hydrocracking of heavy oils poses greater challenges than that of lighter feeds in terms of catalyst properties and resistance to deactivation. The development of larger pore size catalysts may be beneficial to improve their effectiveness toward cracking the larger molecules present in these feedstocks. Mesoporous alumina and mesoporous silica–alumina (MSA) with different textural properties were used as supports to prepare NiMo-based catalysts. These catalysts were tested in the hydrocracking of a vacuum residue (VR) from Maya crude oil and compared against a commercial Al2O3 catalyst. The conversion of VR and asphaltenes into lighter hydrocarbons obtained with supports and catalysts was determined, and the coke deposition process was studied. The in-house developed catalysts were utilized for two consecutive runs with fresh feed to evaluate coke deposition during reutilization of the materials. It was found that coke deposition occurred mainly in the first run, with carbonaceous deposits stabilizing for all the catalysts during their reutilization. Reaction temperature had an important impact on conversions and product distributions, with higher reaction temperatures accounting for higher VR and asphaltene conversions at the expense of a large increase in gas yields. Although the NiMo/Al2O3 catalyst achieved similar VR conversion to the other catalysts, it displayed higher asphaltene conversion with lower coke deposition and a reduced gas yield. The effectiveness of this catalyst can be attributed to its larger pores that can allow better diffusion of asphaltene molecules than MSA or NiMo/MSA as well as the commercial catalyst.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call