Abstract
The hydrocracking of long paraffins in the presence of sulfur and aromatic impurities using Pt–Pd/WO3–ZrO2 was assessed. The catalysts were tested for n-hexadecane hydrocraking in the presence and absence of several poisons, benzothiophene, quinolein, carbon disulfide, benzene, and naphthalene. At small impurity levels, aromatics are beneficial for the hydrocracking of long paraffins because they increase the liquid yield and reduce the cracking to light gases. Sulfur compounds were strong poisons of the activity. Benzothiophene was the strongest, producing the highest decline in activity and being more strongly chemisorbed than basic quinolein. Sulfur poisoning drastically affected the hydrocracking activity, indicating that acid isomerization cracking on WO3–ZrO2 follows a bifunctional mechanism with a big influence of the metal function. Incorporation of Pd to Pt/WO3–ZrO2 reduced the sulfur poisoning, with Pt–Pd (3:1)/WO3–ZrO2 being the best catalyst for stable hydrocracking of long paraffins in the presence of sulfur. This catalyst retained most of the activity of the Pt/WO3–ZrO2 parent material while being less affected by sulfur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.