Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition that affects mostly young infants. The purpose of this research was to achieve a prolonged drug release and the reduction of side effects with hydrocortisone-loaded nanoparticles (NPs), for AD treatment. Poly(ε-caprolactone) (PCL) NPs were prepared by modified solvent displacement method and were characterized in terms of size, potential zeta, morphology, entrapment efficiency (EE), Fourier transform infrared (FT-IR) spectrometry and in vitro permeation studies using Franz cells. Toxicology of this nanosystem was also assessed. The obtained NPs EE showed an increased size and a more homogenous size distribution after loading and were negatively charged. EF was around 62%. In vitro release studies demonstrated a controlled release of drug from the NPs over time. FT-IR analysis showed the system stability for one week. Permeation studies revealed significant differences in the permeation of encapsulated and free hydrocortisone. In vitro toxicity studies showed no effect of drug toxicity after encapsulation. The study seems to indicate that encapsulation of hydrocortisone in PCL NPs could enable a faster control of the disease and a decrease in the side effects associated to the long-term application of corticosteroids.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.