Abstract
The novel ruthenaphosphaalkenyls [Ru{P═C(H)SiMe2R}Cl(CO)(PPh3)2] (R = p-C6H4CF3, nBu) have been prepared for the first time, and studied alongside precedent analogues (R = Me, Ph, p-tol) for their reactions with HCl. In contrast to chemistry defined for the tert-butyl congener [Ru{P═C(H)tBu}Cl(CO)(PPh3)2], which initially adds a single equivalent of HCl across the Ru–P linkage, all five silyl derivatives undergo spontaneous addition of a second equivalent to afford [Ru{η1-PHCl–CH2SiMe2R}Cl(CO)(PPh3)2], extremely rare examples of coordinated “PHXR” type ligands. Where R = SiMe3, a distorted octahedral geometry with a conformationally restricted “PHXR” ligand is observed crystallographically; this structure is appreciably retained in solution, as determined from multinuclear NMR spectroscopic features, which include a Karplus-like PPPh3–Ru–P–H spin–spin coupling dependence. Computational data suggest a silyl-induced increase in negative charge density at the phosphaalkenic carbon, rather than an intrinsic thermodynamic driver, as the likely origin of the disparate reactivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.