Abstract

We fabricated Bi2Sr2CaCu2O8+δ (Bi-2212) intrinsic Josephson junctions (IJJ) integrating of an oscillator and a detector by double side photolithography and material modification with a dilutehydrochloric acid solution (pH = 1.65) within a monolithic Bi-2212 crystal. The dilute hydrochloric solution modifies Bi-2212 to insulating BiOCl. Various lateral dimensions of the oscillator IJJ from 45 × 8 to 95 × 30 µm2 were formed; all of the detectors were about 15 × 10 to 15 × 30 µm2 in lateral dimensions. These stacks have 180–416 junctions. Zero voltage current for the detector stack was measured at 77 K while sweeping a bias voltage in the oscillator stack. The zero voltage current of the detector stack was strongly suppressed when a kink structure in the current–voltage curve of the oscillator stacks appeared. This indicates that the oscillator stack emits radiation at this voltage. From the Josephson voltage-frequency relation, it is found that the voltage corresponds to about 0.5–1 THz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call