Abstract

We established the presence of the proinflammatory cytokine macrophage migration inhibitory factor (MIF) in the bladder and in nervous system structures innervating the bladder, and evaluated changes in MIF and cyclooxygenase-2 (COX-2) protein levels and expression following chemical cystitis. Male Sprague-Dawley rats were anesthetized and a catheter was introduced into the bladder dome. Cystitis was induced by infusing 0.4 N HCl into the bladder. Control rats received a similar volume of saline. Two hours later the bladder, major pelvic ganglia (MPG), L6/S1 dorsal root ganglia (DRG) and L6/S1 spinal cord were removed and assayed for MIF and COX-2 protein, and mRNA using Western blot and quantitative reverse transcriptase-polymerase chain reaction techniques. Immunohistochemistry showed MIF located mainly in the urothelium of saline treated rats. Instillation of HCl into the bladder resulted in marked epithelial denudation, moderate edema and vasodilatation in the submucosa. MIF protein levels decreased but MIF mRNA expression remained unchanged in bladders treated with HCl compared with controls. However, MIF protein and mRNA levels increased in the MPG, L6/S1 DRG and L6/S1 spinal cord of HCl treated animals. COX-2 protein was not detected in the bladder, DRG or MPG of saline-treated rats. However, a small amount was present in the L6/S1 cord. On the other hand, HCl treated rats showed marked increases in COX-2 protein levels in all tissues examined. Similarly although cox-2 mRNA was constitutively expressed in all tissues examined, expression increased following HCl treatment. Chemical cystitis induced by intravesical HCl in rats increases the protein levels and mRNA expression of MIF and COX-2 in central and peripheral nervous system tissues that are involved in innervating the bladder. This finding suggests that MIF may be involved in bladder inflammation and may have a role in the peripheral and central nervous system pathways that regulate bladder reflexes in response to bladder inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call