Abstract

AbstractMeasurements of the electrical conductivity of subglacial water provide a useful complement to measurements of pressure and turbidity. In the summer season, fluctuations of conductivity can be attributed to changes in water transport, water provenance and subglacial residence time. These explanations are unlikely to apply during the winter season because surface melt sources are not active and the subglacial water system is predominantly unconnected. Thus, fluctuations in water conductivity during the winter months seem paradoxical. To introduce a quantitative basis for comprehending such phenomena, we develop an interpretative model of the hydrochemical interaction between a water-filled borehole and a subglacial aquifer. The electrical conductivity of water near the borehole–aquifer contact is affected not only by diffusion but also by advective transport of solute between the two reservoirs in response to pressure forcing of the system. Using records of ice strain, water pressure and electrical conductivity from unconnected boreholes in Trapridge Glacier, we demonstrate that changes in borehole geometry caused by ice-strain events provide a plausible mechanism for at least some of the observed fluctuations of electrical conductivity. Conductivity records provide information regarding advective coupling of the borehole–aquifer system that is not available from pressure records alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.