Abstract

The leaching processes along the flow path and over abstraction of the alluvial aquifer, the principal aquifer in delta Tokar, by the agricultural and domestic sectors and natural factors, have led to its salinization which may be due to interaction between geological formations and adjacent brackish and saline water bodies as well as seawater transgression. The main objectives of this study are to assess the hydrochemical characteristics of the groundwater and to delineate the locations and the sources of aquifer salinization. Water samples in the project area were chemically analyzed for major cations and anions at the laboratory by the standard analytical procedures. Chemical data and water level measurements were manipulated using GIS techniques for hydro chemical and flow direction maps and piper diagram for chemical facies and SPSS software for statistical analyses such as basic statistics (mean and standard deviation) and Spearman’s correlation matrix. The general flow direction of the groundwater is from Southwest towards East and Northeast. The hydraulic gradient is relatively steeper at the apex of the delta (0.06) and amounts to 0.005 at the distal part of the delta. The average transmissivity value of the water bearing formations was found to be about 4.5 × 103 m2/s, whereas, the storage coefficient was about 0.28. A hydrochemical study identified the locations and the sources of aquifer salinization and delineated their areas of influence. The investigation indicates that the aquifer water quality is significantly modified as groundwater flows from the southwestern parts of the study area, where the aquifer receives its water by lateral underflow from Khor Baraka flood plain, to the central and northeastern parts, with few exceptions of scattered anomalous concentration pockets in the deltaic plain. Significant correlation between TDS and/or EC with the major components of Na+, Cl−, and SO4−2 ions is an indication of seawater influence on the groundwater salinity. Moreover, Cl−, SO42−, and Na+ are predominant ions followed by Ca2+ and HCO3−. Hence, four types of groundwater can be chemically distinguished: Na–Ca–SO4–Cl– facies, Na–Cl–SO4–HCO3– facies, Na–Ca–Mg–SO4–Cl–HCO3 facies, and Na–Ca–Mg–Cl–SO4 facies. The processes that govern changes in groundwater composition as revealed by chemical and statistical analyses are mainly associated with over-abstraction, biodegradation, marine intrusions, and carbonate saturation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.