Abstract

AbstractHydrochemical changes before and after earthquakes have been reported for over 50 years. However, few reports provide sufficient data for an association to be verified statistically. Also, no mechanism has been proposed to explain why hydrochemical changes are observed far from earthquake foci where associated strains are small (<10−8). Here we address these challenges based on time series of multiple hydrochemical parameters from two sites in northern Iceland. We report hydrochemical changes before and after M >5 earthquakes in 2002, 2012, and 2013. The longevity of the time series (10 and 16 years) permits statistical verification of coupling between hydrochemical changes and earthquakes. We used a Student t test to find significant hydrochemical changes and a binomial test to confirm association with earthquakes. Probable association was confirmed for preseismic changes based on five parameters (Na, Si, K, δ18O, and δ2H) and postseismic changes based on eight parameters (Ca, Na, Si, Cl, F, SO4, δ18O, and δ2H). Using concentration ratios and stable isotope values, we showed that (1) gradual preseismic changes were caused by source mixing, which resulted in a shift from equilibrium and triggered water‐rock interaction; (2) postseismic changes were caused by rapid source mixing; and (3) longer‐term hydrochemical changes were caused by source mixing and mineral growth. Because hydrochemical changes occur at small earthquake‐related strains, we attribute source mixing and water‐rock interaction to microscale fracturing. Because fracture density and size scale inversely, we infer that mixing of nearby sources and water‐rock interaction are feasible responses to small earthquake‐related strains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.