Abstract

Sugarcane bagasse, vinasse and a mixture of sugarcane bagasse and vinasse were hydrothermally carbonized (HTC), with and without the addition of phosphoric acid, in order to propose new applications of sucroenergetic industry by-products on soil. Detailed information on the composition and properties of hydrochars has been obtained through elemental composition, thermogravimetric analysis, nuclear magnetic resonance and, thermochemolysis GC-MS. The soluble acidic fraction from the hydrochar samples were applied to maize seeds to evaluate the agronomic potential as biostimulants and relate the molecular features with maize seed germination. The HTC treatment converted polysaccharide-based biomasses into hydrochars with hydrophobic characteristics (C-Aryl and C-Akyl). Furthermore, the addition of phosphoric acid further increased the overall hydrophobicity and shifted the thermal degradation of the hydrochars to higher temperatures. Biomass influenced the hydrochars that formed, in which the molecular features of sugarcane bagasse determined the formation of more polar hydrochar, due to the preservation of lignin and phenolic components. Meanwhile, the HTC of vinasse resulted in a more hydrophobic product with an enrichment of condensed and recalcitrant organic fractions. The germination assay showed that polar structures of bagasse may play a role in improving the maize seeds germination rate (increase of ~11%), while the hydrophobic domains showed negative effects. The responses obtained in germination seems to be related to the molecular characteristics that organic extracts can present in solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.