Abstract

We demonstrate that supported Sn/Ni alloy catalyst is more resistant to deactivation via carbon deposition than supported monometallic Ni catalyst in steam reforming of isooctane at moderate steam to carbon ratios, irrespective of the average size of metal particles and the metal loading. The experiments were performed for average diameters of catalytic particles ranging from 30 to 500 nm and for the loading of active material ranging from 15 to 44 wt% with respect to the total mass of catalyst. The steam reforming reactions were performed at conditions that are consistent with typical solid oxide fuel cell (SOFC) operating conditions. DFT calculations show that the reasons for the enhanced carbon-tolerance of Sn/Ni compared to monometallic Ni are high propensity of Sn/Ni to oxidize carbon and lower driving force to form carbon deposits on low-coordinated metal sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call