Abstract
The effects of all-hydrocarbon cross-linking on the cell-penetrating properties of Tat were systematically investigated. These stapled cell-penetrating peptides were designed to exhibit a cationic secondary amphipathic profile. We found that the hydrophobicity and helical conformation of these hydrocarbon staple peptides correlate well with their cellular uptake efficiency. Our results also revealed that higher affinity to heparan sulfate of the rigid stapled Tat peptides correlated well with the higher cellular uptake compared with non-stapled Tat peptides with flexible charge display. Notably, the stapled Tat peptides showed increased endosomal escape, high proteolytic stability, and low cytotoxicity. Therefore, they present a potent system for the intracellular transport of bioactive cargos.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.