Abstract

Abstract Diatomaceous sediments are often prolific hydrocarbon source rocks. In the Paratethys area, diatomaceous rocks are widespread in the Oligo-Miocene strata. Diatomites from three locations, Szurdokpüspöki (Hungary) and Limberg and Parisdorf (Austria), were selected for this study, together with core materials from rocks underlying diatomites in the Limberg area. Bulk geochemical parameters (total organic carbon [TOC], carbonate and sulphur contents and hydrogen index [HI]) were determined for a total of 44 samples in order to study their petroleum potential. Additionally, 24 samples were prepared to investigate diatom assemblages. The middle Miocene diatomite from Szurdokpüspöki (Pannonian Basin) formed in a restricted basin near a volcanic silica source. The diatom-rich succession is separated by a rhyolitic tuff into a lower non-marine and an upper marine layer. An approximately 12-m thick interval in the lower part has been investigated. It contains carbonate-rich diatomaceous rocks with a fair to good oil potential (average TOC: 1.28% wt.; HI: 178 to 723 mg HC/g TOC) in its lower part and carbonate-free sediments without oil potential in its upper part (average TOC: 0.14% wt.). The composition of the well-preserved diatom flora supports a near-shore brackish environment. The studied succession is thermally immature. If mature, the carbonate-rich part of the succession may generate about 0.25 tons of hydrocarbons per square meter. The diatomaceous Limberg Member of the lower Miocene Zellerndorf Formation reflects upwelling along the northern margin of the Alpine-Carpathian Foreland. TOC contents are very low (average TOC: 0.13% wt.) and demonstrate that the Limberg Member is a very poor source rock. The same is true for the underlying and over-lying rocks of the Zellerndorf Formation (average TOC: 0.78% wt.). Diatom preservation was found to differ considerably between the study sites. The Szurdokpüspöki section is characterised by excellent diatom preservation, while the diatom valves from Parisdorf/Limberg are highly broken. One reason for this contrast could be the different depositional environments. Volcanic input is also likely to have contributed to the excellent diatom preservation in Szurdokpüspöki. In contrast, high-energy upwelling currents and wave action may have contributed to the poor diatom preservation in Parisdorf. The hydrocarbon potential of diatomaceous rocks of Oligocene (Chert Member; Western Carpathians) and Miocene ages (Groisenbach Member, Aflenz Basin; Kozakhurian sediments, Kaliakra canyon of the western Black Sea) has been studied previously. The comparison shows that diatomaceous rocks deposited in similar depositional settings may hold largely varying petroleum potential and that the petroleum potential is mainly controlled by local factors. For example, both the Kozakhurian sediments and the Limberg Member accumulated in upwelling environments but differ greatly in source rock potential. Moreover, the petroleum potential of the Szurdokpüspöki diatomite, the Chert Member and the Groisenbach Member differs greatly, although all units are deposited in silled basins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.