Abstract

Catalytic properties of Fe- and Cr-based metal-organic frameworks (MOFs) MIL-100 and MIL-101 have been assessed in two liquid-phase reactions: solvent-free allylic oxidation of alkenes (cyclohexene, α- and β-pinenes) with molecular oxygen and oxidation of anthracene (AN) with tert-butyl hydroperoxide (TBHP). In the oxidation of alkenes, the product selectivity strongly depends on the nature of metal (Fe or Cr) but, for the same metal, only slightly differs for the MIL-100 and MIL-101 structures. The Fe-containing MOFs afford the formation of unsaturated alcohols while Cr-based MOFs give mainly unsaturated ketones. Both Cr-MIL-100 and Cr-MIL-101 favor decomposition of cyclohexenyl hydroperoxide to produce 2-cyclohexen-1-one with 67–69% selectivity. Stability toward destruction reduced in the order Cr-MIL-101, Cr-MIL-100>Fe-MIL-100>Fe-MIL-101. In the oxidation of anthracene over both Cr-MOFs and Fe-MIL-101, the selectivity toward 9,10-anthraquinone (AQ) attained 100% at 92–100% AN conversion. The turnover frequency (TOF) decreased in the order Cr-MIL-101>Fe-MIL-101>Cr-MIL-100>Fe-MIL-100. Cr-MIL-101 revealed superior catalytic performance in terms of AN conversion, AQ selectivity and TOF. Nearly quantitative yield of AQ was obtained after 1.5h at 100°C in chlorobenzene as solvent. No leaching of active metal occurred under optimal reaction conditions and the MOFs could be recycled several times without deterioration of the catalytic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.