Abstract
AbstractCombined with the actual geological settings, tight oil is the oil that occurs in shale or tight reservoirs, which has permeability less than 1 mD and is interbedded with or close to shale, including tight dolomitic oil and shale oil. The Fengcheng area (FA), at the northwest margin of the Junggar Basin, northwest China, has made significant progress in the tight oil exploration of the Fengcheng (P1f) Formation recently, which indicates that the tight oil resources have good exploration prospects. Whereas the lack of recognition of hydrocarbon generation and expulsion characteristics of Permian P1f source rocks results in the misunderstanding of tight oil resource potential. Based on the comprehensive analysis of geological and geochemical characteristics of wells, seismic inversion, sedimentary facies, tectonic burial depth, etc., the characteristics of P1f source rocks were investigated, and the horizontal distributions of the following aspects were predicted: the thickness of source rocks, abundance and type of organic matter. And on this basis, an improved hydrocarbon generation potential methodology together with basin simulation techniques was applied to unravel the petroleum generation and expulsion characteristics of P1f source rocks in FA. Results show that the P1f source rocks distribute widely (up to 2039 km2), are thick (up to 260 m), have high total organic content (TOC, ranging from 0.15 to 4 wt%), are dominated by type II kerogen and have entered into low mature–mature stage. The modeling results indicate that the source rocks reached hydrocarbon generation threshold and hydrocarbon expulsion threshold at 0.5% Ro and 0.85% Ro and the comprehensive hydrocarbon expulsion efficiency was about 46%. The amount of generation and expulsion from the P1f source rocks was 31.85 × 108 and 15.31 × 108 t, respectively, with a residual amount of 16.54 × 108 t within the source rocks. Volumetrically, the geological resource of shale oil is up to 15.65 × 108 t. Small differences between the amounts calculated by the volumetric method compared with that by hydrocarbon generation potential methodology may be due to other oil accumulations present within interbedded sands associated with the oil shales. Copyright © 2015 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.