Abstract

The rate of formation of a hydrocarbon film on the surface of a sample subjected to the action of an electron beam is studied at room temperature and in cooling a sample to the liquid nitrogen temperature. The thickness and the optical radiation transmission of such films are measured as functions of the electron beam radiation time, the sample temperature, and the level of vacuum. The film thickness is measured with atomic force microscopy. The absorption of the films is determined by comparing the cathodoluminescence intensities from a pure sample surface and from the surface covered with a film. The experimental results can be used to estimate the film formation rate as a function of the sample temperature and the vacuum and to determine the optical radiation absorption at a wavelength of 300, 360, 550, and 665 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call