Abstract

Carbon nanotubes were synthesised within the pores of an alumina membrane. The membrane had 200 nm diameter pores and 60 microm thickness, and ethylene was used as carbon source. Membrane dissolution by HF results in a bundle of parallel open tubes, aligned without macroscopic defects. The external diameter of the tubes is uniform and there is no evidence of any amorphous carbon. Wall thickness control was obtained by varying the reaction time, length by the thickness of alumina membrane, and external tube diameter by the membrane pore size. Scanning (SEM) and transmission (TEM) electron microscopy, atomic force microscopy (AFM), X-ray diffraction, thermogravimetric analysis (TG) and surface area evaluation by nitrogen adsorption were used for the characterization of membrane and nanotubes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call