Abstract
AbstractFLUID COKING is a continuous process that thermally converts heavy hydrocarbons, such as oil sands bitumen, to lighter and higher‐value products by horizontal spray injection onto a fluidized bed of hot coke particles. The cyclone sections of commercial fluid coker reactors experience fouling during typical operation, which limits unit run lengths. The main objective of this work is to improve fluid coker reliability by proposing cyclone fouling mitigation strategies based on practical operation modifications. This study developed a process simulation in Aspen Plus to establish the combined impact of vapour‐liquid equilibrium, endothermic thermal cracking reactions, pressure changes, and overall fluid dynamics in the selected fluid coker control volumes. The hydrocarbon composition was defined by applying an assay characterization of distillation data for representative hydrocarbon streams. Case studies were performed to determine the sensitivity of the predicted temperatures and hydrocarbon condensate flow rates for: (a) the burner‐to‐fluid coker transfer line temperature; (b) the hot coke flow rate; (c) hot coke entrainment from the freeboard region; and (d) scouring coke flow rate in the horn chamber. The scouring coke flow rate was identified as the most promising process lever to mitigate fluid coker cyclone fouling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.