Abstract

The semivolatile mass fraction of diesel exhaust particles was studied using size-resolved on-line techniques (DMA-ELPI; TDMA-ELPI). The average density of the semivolatile liquid on the particles was measured to be approximately 0.8 g/cm3. The measured size resolved values of mass transfer imply that condensation, or diffusion-limited mass transfer, plays a major role in driving the volatile matter to the diesel exhaust particles. The measured mass change values correspond to highly size dependent mass fractions for the semivolatile component, ranging from approximately 20-80%. Integrated over particle size distribution, the volatile mass fractions were 25 and 45% for the two load points studied. Calculation, based on the measured particle properties, indicates that only 10% volatile mass fraction could be explained by monolayer adsorption. The size resolved changes in particle effective density, fractal dimension, volatile mass fractions and mass are all in agreement with theoretical considerations of condensation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.