Abstract

In previous studies using human breast carcinoma cells (MCF-7) and human colon carcinoma cells (RKO) we have shown that, in response to treatment with hydrocarbon carcinogens, these cell lines failed to undergo a p53-mediated cell cycle arrest in G1 phase; rather, the cells were accumulated in the S phase with damaged DNA, a situation that may lead to replication of DNA on a damaged template, resulting in the enhanced frequency of mutations in the daughter cells. This has been termed a stealth effect. In the present work we have demonstrated that the stealth effect also pertains for lung cells. In E10 nontransformed mouse lung type II cells, two potent hydrocarbon carcinogens, benzo[a]pyrene dihydrodiol epoxide and benzo[g]chrysene dihydrodiol epoxide, damaged DNA as suggested by retardation in S phase, but did not cause G1 arrest, in contrast to the positive control, actinomycin D. Human lung adenocarcinoma A549 cells, with normal p53, likewise exhibited G1 arrest after actinomycin D, but not after treatment with the diol epoxides. Several human lung cancer cell lines with absent or mutant p53, such as H358, H1734, and H82, exhibited no G1 arrest after any of the compounds. However, lung H441 adenocarcinoma cells, with a mutation in exon 5, codon 158 of p53, exhibited partial G1 arrest after the diol epoxides as well as actinomycin D, and H2030 adenocarcinoma cells did not show G1 arrest after any of the chemicals despite a normal p53. The stealth effect of evasion of G1 arrest may contribute to initiation of lung adenocarcinomas and to progression of tumors. A role in resistance to chemotherapy by certain drugs is also likely.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.