Abstract

This study examines the role of the organic carbon content of sediment in aromatic hydrocarbon bioaccumulation and assesses the importance of two routes of hydrocarbon uptake: (1) the uptake of the particulate contaminant fraction from ingested sediment; (2) the uptake of the dissolved contaminant fraction from interstitial or overlying water. The lugwormAbarenicola pacifica was collected from San Juan Island, Washington, USA, in January 1989, and exposed to three sediments contaminated with [3H]benzo (a) pyrene (BaP). By manipulating the organic content of these sediments, it was possible to establish three treatments with similar BaP concentrations in the interstitial water, but differing in the amount of BaP in the bulk sediment. BaP bioaccumulation over the first few days of exposure was correlated with feeding rate, suggesting that ingested sediments were a source of BaP. The greatest body burden, however, was attained in those individuals held in sediments with the lowest organic carbon content and the lowest BaP concentration. Body burden at steady state was not correlated with either BaP concentrations in bulk sediment (dry weight or organic carbon-normalized bases) or the interstitial water. Increased organic matter decreased BaP bioavailability in a non-linear fashion. Bioaccumulation factors relative to water and organic content were relatively constant between 1 and 2% organic carbon in the sediment, but these same accumulation factors substantially underestimated body burden if applied to sandy sediments with little (0.3%) organic carbon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call