Abstract
Hydrocarbon-bearing fluid inclusions in fluorite, associated with an outcropping bitumen deposit at Windy Knoll, Derbyshire, have been analysed in situ using a combination of microthermometry, Fourier transform infrared (FTIR) microspectrometry, and ultraviolet (UV) microscopy. The inclusions in these samples can be considered as a series with two endmembers: aqueous inclusions containing a low-density vapour phase and inclusions containing liquid “oil” with no detectable aqueous phase. The majority of the inclusions are mixed types containing both aqueous and liquid hydrocarbon phases. Although microthermometry distinguishes at least two different aqueous fluids with varying homogenization temperatures and salinities, the oil fraction is cogenetic and trapped together with just one fluid, a low-salinity, low-calcium brine with an average homogenization temperature of 134°C. The majority of the liquid hydrocarbon-bearing inclusions fluoresce bright blue under UV illumination with peaks around 475 nm, characteristic of paraffinic oils. The FTIR spectra of these inclusions are dominated by peaks assigned to aliphatic C—H bonding. However, inclusions have also been found which display a fluorescence typical of the red-shift associated with less mature oils. The FTIR spectra display peaks assigned to CO, C—O, and O—CH 2 bonding. This study presents new data on the in-situ analysis of hydrocarbon-bearing fluid inclusions from this important area of natural petroleum seepage and ore mineralization. The results suggest a direct link between the fluid inclusion populations, the outcropping bitumens, and fluorite deposition.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.